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Abstract—One of the key problems in path testing is building 

a path through specified set of stalemates particularly which 

contain loops. Traditional genetic algorithm has been successfully 

used in software testing activities such as finding test data, 

selecting test cases and test cases prioritization. In this paper, we 

introduce a new variable length genetic algorithm. Based on the 

new algorithm, we present a new strategy for automatically 

generating a set of basis test paths which can be used as testing 

paths in any basis path testing technique. We define all elements 

of genetic algorithm such as chromosome representation, 

crossover, mutation, and fitness function to be compatible with 

path generation. In addition, we present a case study to show the 

efficiency of our strategy. 

Keywords-Genetic Algorithm; Basis Path Testing; Path 

Generation. 

I.  INTRODUCTION 

Structural testing requires the execution of a set of test 

paths in the program under testing. Generating this set of paths 

is a critical task, and its automation is strongly desirable for 

easing the testing process. This task can influence the efficacy 

and cost of testing activity. 

Basis path testing is one of the very powerful structural 

testing criteria. Basis path testing requires number of test paths 

(basis set) equals to the cyclomatic complexity of program [1] 

such that every path is an independent path and all edges in the 

control-flow graph (CFG) are covered by all paths in the basis 

set. In addition, a path that is not contained in the basis set can 

be constructed by a linear combination of paths in this set. 

Some path generation methods have been introduced so far. 

Bertolino and Marre [2] provided a path generation method by 

using a reduced CFG. Although all the statements and branches 

can be covered by the set of paths, it cannot be assured that the 

set of paths generated by this method is a basis set of paths. 

Pool [3] discussed a basis set of paths generation method on 

the depth first search in CFG. It uses a recursive search in the 

CFG. As Pool’s method, the loop is not taken into account. In 

addition, this method did not consider how to choose the 

successor of multiple-successors node in a CFG to build a basis 

path during the construction of the basis set of paths. 

Guangmei et al. [4] presented an automatic generation method 

of basis set of paths which is built by searching the CFG by 

depth-first searching method. In order to avoid that the 

algorithm will never stop, and for reducing the searching 

procedure, the sub-path from the multi-indegree nodes to the 

end node of a program and the sub-path that contains a loop are 

recorded during the construction of a basis path. This method 

did not handle infeasible paths. Yan and Zhang [5] presented a 

method for generating a finite set F of feasible paths which 

satisfies the basis path coverage criterion. Then, they found a 

minimal subset S of set F such that S satisfies the test coverage 

criterion. The first step should check the feasibility of all paths 

and feasibility checking is quite time-consuming. Zhonglin and 

Lingxia [6] and Qingfeng and Xiao [7] use cyclomatic 

complexity in generating a set of linearly independent paths. 

Many basis paths are infeasible because of data dependences 

exist in variables involved in decision node. They combine the 

baseline method with the dependence relationship to avoid 

selecting infeasible paths. These methods didn’t handle loops. 

Search-based testing techniques especially traditional 

genetic algorithms have been successfully used in software 

testing activities such as finding test data [8, 9]. Bint and Site 

discussed a path generation method based on genetic algorithm 

[10]. The defect of this method is that the generated set of paths 

cannot cover all edges of the CFG because the loop operation 

is removed. In addition, this method cannot generate a basis set 

of test paths. 

In this paper, we introduce a new variable length genetic 

algorithm. Based on the proposed algorithm, we introduce a 

new technique for automatically generating a set of basis test 

paths. We define all elements of the new genetic algorithm 

such as representation, crossover, mutation, and fitness 

function to be compatible with path generation process. We 

will introduce how the proposed technique can handle the loop 

and infeasible paths. In addition, we will present a case study to 

show the efficiency of our new strategy. 

The rest of the paper is organized as follows. Section 2 

introduces the problem formulation. Section 3 gives some 

definitions. Section 4 presents our proposed strategy. Section 5 

introduces a case study of the proposed method. Section 6 

concludes the paper. 

II. BASIS PATH TESTING 

Structural testing generally requires the execution of a set Q 

of paths in the program under testing. Determining Q is a very 

important and critical task, and its automation is strongly 
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desirable for easing the testing strategy. This task can influence 

on the efficacy and on the testing effort and costs. 

Thomas McCabe came up with the idea of using a vector 

space to carry out path testing [1]. A vector space is a set of 

elements along with certain operations that can be performed 

upon these elements. What makes vector spaces an attractive 

proposition to testers is that they contain a basis. The basis of a 

vector space contains a set of vectors that are independent of 

one another, and have a spanning property; this means that 

everything within the vector space can be expressed in terms of 

the elements within the basis. What McCabe noticed was that if 

a basis could be provided for a program graph, this basis could 

be subjected to rigorous testing; if proven to be without fault, it 

could be assumed that those paths expressed in terms of that 

basis are also correct. The method devised by McCabe [1] to 

carry out basis path testing has the following four steps: 

 Compute the program graph. 

 Calculate the cyclomatic complexity. In graph theory, 

the cyclomatic number is defined as C(G) = m – n + q, 

where m is number of edges in the graph G, n is 

number of nodes, and q is number of strongly 

connected components. For a program that has a single 

entry and exit point, q = 1 [6]. In basis path testing, the 

cyclomatic complexity should be the upper limit for the 

number of basis paths [11]. 

 Select a basis set of paths. 

 Generate test cases for each of these paths. 

Independent path: An independent path is a path of a 

program, and there is at least one edge in the control-flow 

graph (CFG) appeared in this path that has never appeared in 

other paths.  

Basis set of path and basis path: A basis set of path is a 

set of paths, and every path in this set should satisfy the next 

three conditions: 

 Every path should be an independent path. 

 All edges in a CFG should be covered by all paths in 

the basis set. 

 Every path that does not contain in a basis set of path 

can be constructed by the linear operation among paths 

in this set. 

The path contained in a basis set is called a basis path. The 

problem of this work is defining a new genetic algorithm and 

using it for generating a set Q of basis paths.  

III. BASIC CONCEPTS 

We introduce here some basic concepts that will be used 

through this work. 

A. Genetic Algorithms Principles 

The basic concepts of genetic algorithms (GAs) were 

developed by Holland [12]. The GAs start by creating an initial 

population of individuals, each represented by randomly 

generated binary string called chromosome. The basic 

algorithm of GAs, where P(t) is the population strings at 

generation number t, is as follows: 

1. initialize P(t); 

2. evaluate P(t); 

3. while termination condition not satisfied do 

4.     select P(t+1) from P(t); 

5.      recombine P(t+1); 

6.      evaluate P(t+1); 

7.      t = t + 1; 

8. end while 

In the evaluation step, the fitness of each individual is 

determined. The selection step is used to find pairs of 

individuals that will be combined in some way to contribute to 

the next generation. The process of crossover involves two 

chromosomes swapping chunks of data. Mutation introduces 

slight changes into a small proportion of population and is 

representative of an evolutionary step. The above algorithm 

will iterate until the population has evolved to form a solution 

to the problem, or until a termination condition is satisfied.  

B. Program representation 

A program’s structure is analyzed on the program flow-

graph, i.e., an annotated directed graph which represents 

graphically the information needed to select the test cases. 

A control-flow graph (CFG) is a directed graph G=(N,E), 

with two distinguished nodes —a unique entry (n0) and a 

unique exit (nk). N is a set of nodes, where each node represents 

a statement, and E is a set of directed edges, where a directed 

edge e = (n, m) is an ordered pair of adjacent nodes, called tail 

and head of e, respectively.  

A dd-graph (DDG) is a digraph G =(N, E), where N is a 

set of nodes and E is a set of edges, with two distinguished 

edges e0, ek (the unique entry edge and the unique exit edge, 

respectively), such that any other edge in E is reached by e0 and 

reaches ek, and such that for each node n  N, n≠tail(e0), 

n≠head(ek), (indegree(n) + outdegree(n)) > 2, while 

indegree(tail(e0)) = 0 and outdegree(tail(e0)) = 1, 

indegree(head(ek)) = 1 and outdegree(head(ek)) = 0. An edge e 

in a dd-graph DDG is an ordered pair of adjacent nodes, called 

tail and head of e, respectively (i.e., e = (tail(e), head(e)). A 

path p of length l in a dd-graph DDG is a sequence p= e0, e1, 

e2, . . . , el, where tail(ei+1) = head(ei) for i = 1, 2,. . . , l-1. A 

path p is simple if all its nodes, except possibly the first and 

last, are distinct. A complete path in a dd-graph DDG is a path 

from the entry node to the exit node of DDG. Given a path p= 

e0, e1, e2, . . . , el, then a path p′= ei, . . . , ej from ei to ej, with 1 

≤ i ≤ j ≤ l, is called a subpath of p. Antonia Bertolino and 

Martina Marre provided a procedure to construct the dd-graph 

by reducing the control flow graph of the program [2]. Figure 

1(a) gives an example program, Figure 1(b) shows its control-

flow graph, and Figure 1(c) provides its ddgraph. 

In our proposed system, we will represent the program 

under test as a dd-graph according to the above definitions. 

IV. OUR PROPOSED STRATEGY 

A. Our new genetic algorithm 

In this section, we present our proposed GA for automatic 

generation of basis test paths for the tested software, which 

uses a new fitness function to evaluate the generated test path. 

This fitness function depends on the concepts of the number of 

the adjacent edges in the ddgraph of the software under test. 

The algorithm searches for test paths that satisfy the three 

conditions of the basis set of path (see section II). The major 

components of this GA are discussed below. 
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1) The search space of our algorithm: 

The search space is the set of all solutions among which the 

desired solution resides. Each point in the search space 

represents one possible solution. Suppose that DDG is a 

ddgraph of tested program. The search space of our new 

genetic algorithm is D, where 

s exit}and reache by entry is reachedDDG and e e|e{D  . 

In other word, the input domain of our algorithm is the set 

of all edges of the ddgraph of the program under test. For 

example the search space of the example program in Figure 1 

is the set of edges D = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9}. 

2) Encoding 

Encoding is a process of representing individual genes. The 

process can be performed using bits, numbers, trees, arrays, 

lists or any other objects. The encoding depends mainly on 

solving the problem. For example, one can encode directly real 

or integer numbers. On the other hand, it is necessary to 

develop new genetic operator’s specific to the problem.  

The proposed GA uses a vector of integer (decimal) 

numbers as a chromosome to represent the edges in the 

ddgraph of the program under test. The length of the vector 

depends on the length of the required basis path. Each edge in 

the ddagrph is represented by its index in the chromosome. In 

addition, each cell (value) in the vector (chromosome) is 

mapped into its corresponding edge using the map: 

M: i chromosome  ei ddgraph. 

For example, suppose the program in Figure 1. Let us 

consider an example chromosome: 0, 1, 3, 5, 9. So, the given 

chromosome corresponds to the path p= {e0, e1, e3, e5, e9}. 

3) Initial population 

As mentioned above, each chromosome is represented by a 

vector of decimal numbers. We randomly generate PS integer 

vectors of length 2 to represent the initial population, where PS 

is the population size. The appropriate value of PS is 

experimentally determined. Each individual in the initial 

population contains two edges the entry and the exit. For the 

example in Figure 1, all individuals have the form 0, 9 (e0, e9). 

The minimum length of the chromosome is two and the 

maximum length equals the number of ddgraph’ edges. 

4) Evaluation function 

The algorithm can use any fitness function to evaluate the 

generated test path. The fitness function which depends on the 

concepts of the probability of the adjacent edges in the path is 

suitable for path generation. The algorithm uses this fitness 

function to evaluate each test path. 

The fitness value ft(vi) for each chromosome ci (i =1,…, 

PS) is calculated as follows: 

(1)             w)c(ft

d

1j

ji 


  

where, d is the number of adjacent edges in the 

chromosome i, wj is the weight (probability) of the edge j in the 

chromosome i,
L

1
w j  , where L the length of the chromosome 

(the number of edges in the chromosome). 

The fitness value is the only feedback from the problem for 

the GA. A test case that is represented by the chromosome vi is 

optimal if its fitness value ft(vi) = 1. 

Consider Figure 1(c), suppose 0, 1, 9 and 0, 2, 3, 9 are two 

chromosomes. The first chromosome contains three genes or 

edges (L=3) while the second contains four genes (L=4). The 

probability of each gene in the first chromosome is 
3

1
and d=2 

while the probability of each gene in the second chromosome 

is
4

1
and d=3. According to ―(1)‖, the fitness values of the first 

and second chromosomes are 
3

2
 and

4

3
, respectively. 

5) Selection 

After computing the fitness of each test path in the current 

population, the algorithm selects test paths from all the 

members of the current population that will be parents of the 

new population. In the selection process, the GA uses the 

roulette wheel method [13]. This method is described below. 

For the selection of a new population with respect to the 

probability distribution based on fitness values, a roulette 

wheel with slots sized according to fitness is used. Such 

roulette wheel is constructed as follows: 

 Calculate the fitness value ft(vi) for each chromosome 

vi (i = 1,…,PS). 

 Find the total fitness of the population  


PS

1i
i )v(ftF . 

 Calculate the relative fitness value rft for each 

chromosome
F

)v(ft
)v(rft i

i  . 

              (a)             (b)                                              (c) 

Figure 1. An example program (a), its control-flow graph (b) and its dd-graph (c) 
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#include <iostream.h> 

void main() 

{ 

       int a, b, c, n; 

1     cin >> a >> b; 

2     if(a < 6) 

       { 

3        c = a; 

       } 

       else 

       { 

4        c = b; 

       } 

5     n = c; 

6     while(n < 8) 

       { 

7       if(b > c) 

         { 

8         c = 2; 

         } 

         else 

        { 

9         n = n + c + 7; 

         } 

10     n = n + 1; 

       } 

11   cout << a << b << n; 

    } 
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 Calculate the cumulative fitness value cft for each 

chromosome  1    i          )         rft(v

,..., ps2)      irft(v)cft(vi
i

i1i
)cft(v




 . 

The selection process is based on spinning the roulette 

wheel PS times; each time we select a single chromosome for a 

new population in the following way: 

 Generate a random number r from the range [0..1]. 

 If r < cft(v1) then select the first chromosome v1; 

otherwise select the i-th chromosome vi (2   i   PS) 

such that )v(cftr)v(cft 1ii  . 

Some chromosomes would be selected more than once. 

6) Reproduction 

In the Reproduction phase, we use three operators, 

crossover, mutation and breeding (a new operator we have 

proposed it), which are the key to the power of GAs. These 

operators create new individuals from the selected parents to 

form a new population. 

Crossover: It operates at the individual level. During 

crossover, two parents (chromosomes) exchange sub-vector 

information (genetic material) at a random position in the 

chromosome to produce two new vectors (offspring). The 

objective here is to create better population over time by 

combining material from pairs of (fitter) members from the 

parent population. Crossover occurs according to a crossover 

probability. The probability of crossover PX gives us the 

expected number PX PS of chromosomes, which undergo the 

crossover operation. We proceed in the following way: 

For each chromosome in the parent population: 

 Generate a random number r from the range [0..1]; 

 If r < PX then select given chromosome for crossover. 

Now, we mate selected chromosomes randomly: For each 

pair of coupled chromosomes we generate a random integer 

number pos from the range [2..L-1] (L is the number of edges 

in a chromosome). The number pos indicates the position of 

the crossing point. Two chromosomes (b1…bposbpos+1…bn) and 

(c1…cposcpos+1…cn) are replaced by a pair of their offspring 

(b1…bposcpos+1…cn) and (c1…cposbpos+1…bn).  

Suppose that C1=(0, 1, 3, 5, 9) and C2=(0, 2, 3, 4, 9) are 

two chromosomes and  4..23pos , where L = 5. After 

applying the crossover operator the new chromosomes are 

B1=(0, 1, 3, 4, 9) and B2=(0, 2, 3, 5, 9). 

Mutation: It is performed on a cell-by-cell basis. Mutation 

always operates after the crossover operator, and changes each 

cell with the pre-determined probability. The probability of 

mutation PM, gives us the expected number of mutated cells 

PM L  PS. Every cell (in all chromosomes in the whole 

population) has an equal chance to undergo mutation. So we 

proceed in the following way: 

For each chromosome in the current population and for 

each cell within the chromosome: 

 Generate a random number r from the range [0..1]; 

 If r < PM then mutate the cell by replacing the edge 

with another edge of its siblings (edges with the same 

parent are called siblings such as e1 and e2). 

Suppose that C1 = (0, 1, 3, 5, 9) is a chromosomes. The 

second cell which has the value 1 will mutate to the value 2. 

Therefore the new chromosome will be B1 = (0, 2, 3, 5, 9). 

Breeding: It is a new operator. We have developed this 

operator to enhance the chromosomes to get a complete path. It 

performed on a cell level. Breeding always operates after the 

mutation operator. We generate a random integer number pos 

from the range [2..L-1]. The number pos indicates the position 

of the breeding point. So, we proceed in the following way: 

For each chromosome in the current population: 

 Generate a random integer number pos from the range 

[2..L-1], L is the length of the chromosome. We can 

put pos = d (number of adjacent edges in the 

chromosome). 

 Identify the edge at the position pos and randomly 

select one edge of its successors. 

 Then, insert the successor edge at the position pos+1 

and increase the length of the chromosome by one. 

Suppose that C1 = (0, 1, 3, 4, 9) is a chromosomes and pos 

= 4. The edge at position 4 is e4. The successors of e4 are e6 

and e7. We randomly select one of the successors and insert it 

at position 5. The new chromosome is B1 = (0, 1, 3, 4, 6, 9). 

7) Elitist 

The elitist function enhances the current population by 

storing one copy of the best member of the previous 

population. If the best member of the current population is 

worse than the best member of the previous population it 

exchanges them, and the best member of the current population 

would replace the worst member of the current population. 

After that, it stores the best member of the current population. 

8) The Stop Conditions 

In the traditional GA approach the population would evolve 

until one individual from the whole set which represents the 

solution is found. In our case, this condition would correspond 

to finding groups of path achieving the basis test paths 

conditions. The evolution stops when a set of individuals has 

satisfied the required conditions and its fitness value ft(vi) = 1. 

The solution is this set. 

The algorithm will stop and the search will end in two 

cases. The first case when the generated test paths satisfy the 

conditions of the basis set of path. The second case when the 

number of generation reaches the maximum number of 

generation. 

B. The Overall Algorithm of the Strategy 

Our proposed GA-based strategy accepts as input the 

program to be tested, the control-flow graph (CFG) and the 

ddgraph (DDG) of the program, the entry (e0) and the exit (ek) 

edges of the ddgraph (DDG) and the set Si of successors of 

each edge ei. Also, it accepts the GA parameters: population 

size, maximum number of generations, and probabilities of the 

crossover and mutation operators. The algorithm produces a 

set of basis test paths.  

The algorithm generates one basis test path at a time and 

repeats until the required paths are obtained or the maximum 

number of generations is exceeded. The overall algorithm is 

presented in Figure 2. 
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C. A Basis Test Paths Generation Tool 

We are implementing a basis test paths generation tool 

based on our proposed strategy. This tool consists of two main 

modules: 

1) The Analysis Module. 

2) Path Generation Module.  

Figure 3 shows the overall diagram of our proposed tool. We 

give a more details of these two modules of our tool in the 

following subsections. 
1) Analysis Module 

The analysis module has been built to perform the 

following tasks: 

 Read the program under test. 

 Classify program statements and reformats them to 

facilitate the construction of the program CFG. 

 Construct the control-flow graph of the reformatted 

version of the program (see Figure 1(b)). 

 Construct the ddgraph by reducing the control flow 

graph using the REDUCE algorithm [2]. Figure 1(c) 

gives an example ddgraph after applying the REDUCE 

algorithm on the control flow graph. 

 Find the set of successors for each edge in the ddgraph. 

Pass the control-flow graph, ddgraph, and table of 

successors to the test path generation module. 
 
 
 
 
 
 
 
 
 

TABLE I.  THE SET OF SUCCESSORS OF EACH EDGE IN THE DDGRAPH. 

edge e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 

Successors 
e1, 

e2 
e3 e3 

e4, 

e5 

e6, 

e7 
e9 e8 e8 

e4, 

e5 
NA 

In the following paragraphs, we give a brief description for 

our proposed module for path generation of C++ programs. 

This module uses the new genetic algorithm to solve the 

problem of deriving a set of basis test paths. 

2) Path Generation Module 

The path generation module uses the suggested genetic 

algorithm to generate set of basis test paths. This module will 

start by initializing all paths by the entry and exit edges. Then 

it will increment each path by adding new edges until get a 

complete path. For example {e0 , e9} is the initialization of any 

path then the algorithm will add new edges according to the 

operators of the genetic algorithm until get a complete path 

such as {e0, e2, e4, e6, e9}. The algorithm will repeat this 

process until generating the set of basis test paths or 

satisfying a stop condition. 
V. A CASE STUDY 

In this section, we introduce a case study to show how the 

proposed strategy can find a basis set of test paths for the 

example program in Figure 1. In the following, we will show 

all the steps of our proposed genetic algorithm. Suppose that 

the population size (PS) is 4. 

1) Initial Population: 

The initial population is four individuals each one contains 

the entry and the exit edges only. Table 2 shows the four 

chromosomes of the initial populations. 

2) Evaluation of the Current Population 

Suppose that the current population has the following four 

chromosomes: C1=(0, 1, 3, 5, 9), C2=(0, 2, 3, 4, 9), C3=(0, 2, 3, 

5, 9) and C4=(0, 1, 3, 4, 9). To find the fitness value of each 

chromosome, we convert each chromosome into the 

corresponding path. Then, we use equation (1) to find the 

fitness value for the chromosome. In each chromosome there 

are five edges in its corresponding path (L=5), and four 

adjacent edges (d=4). Then, 5,...,1,
5

1
 iwi . Therefore, the 

/* A GA algorithm to automatically generate set of basis test paths for a given program */ 
Input: 

The program to be tested P; 

The control-flow graph (CFG) and the ddgraph (DDG) of P. 

The entry e0 and the exit ek edges of the ddgraph (DDG). 

The set Si of successors of each edge ei. 

Population size (PS); 

Maximum no. of generations (MG); 

Probability of crossover (PX); 

Probability of mutation (PM); 

Output: 

Set of basis test paths (BTP) for P. 

Begin 

Step 1: Initialization 

for i = 1 to PS  

Initialize each path pi ← φ; 

Initialize the set of basis test paths BTP ← φ; 

nRun ←0; 

Step 2: Generate basis test paths 

While (the set BTP is not a basis set) 

Begin 

nRun ← nRun + 1;  

for i = 1 to PS // Create Initial_Population; 

Put each path pi ← {e0, ek}; 

Current_population ← Initial_Population; 

No_Of_Generations ← 0; 

For each individual of the current population do 

Begin 

Convert the current chromosome to the corresponding path; 

Evaluate the current path using equation (1); 

If (the current path is independent path) then 

Add the current path to the set BTP; 

nPaths ← nPaths + 1; 

End If 

End For; 

Keep the best individual of the current population; 

While (the best individual is not independent path and No_Of_Generations ≤ MG) do 

Begin 

Select set of parents of new population from members of current population using 

roulette wheel method; 

Create New_Population using crossover and mutation operators; 

Current_Population ← New_Population; 

For each individual of Current_Population do 

Begin 

Convert current chromosome to the corresponding path; 

Evaluate the current path using equation (1); 

If (the current path is independent path) then 

Add the current path to the set BTP; 

nPaths ← nPaths + 1; 

End If 

End For; 

Apply Elitist function; 

Enhance the Current_Population by applying the breeding operator; 

For each individual of Current_Population do 

Begin 

Convert current chromosome to the corresponding path; 

Evaluate the current path using equation (1); 

If (the current path is independent path) then 

Add the current path to the set BTP; 

nPaths ← nPaths + 1; 

End If 

End For; 

No_Of_Generations ← No_Of_Generations + 1; 

End While; 

End While; 

Step 3: Produce output 

Return set of basis test paths for P, and set of edges covered by each test path; 

Report on uncovered edges, if any; 

End. 

Figure 2: The Overall Algorithm. 
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fitness value of C1 = ft(C1)=w1+ w2+ w3+ w4 =
5

4
= 0.8. Table 

3 shows the fitness values of the current population. 

TABLE II.  THE CHROMOSOMES OF THE INITIAL POPULATION. 

Chromosome # Chromosome  Corresponding Path 

C1 0, 9 e0, e9 

C2 0, 9 e0, e9 

C3 0, 9 e0, e9 

C4 0, 9 e0, e9 

TABLE III.  THE FITNESS VALUES OF THE CURRENT POPULATION. 

Chromosome # Corresponding Path Fitness value 

C1 e0, e1, e3, e4, e9 0.80 

C2 e0, e2, e3, e4, e9 0.80 

C3 e0, e2, e3, e4, e9 0.80 

C4 e0, e1, e3, e4, e9 0.80 

3) Selection: 

We use the roulette wheel method to select the parents of 

the next population. The total fitness F=ft(C1)+ft(C2)+ ft(C3)+ 

ft(C4)= 3.2. Table 4 shows the computations of roulette wheel. 

TABLE IV.  THE ROULETTE WHEEL. 

C # 
Fitness 

value 

Relative 

Fitness 

Cumulative 

Fitness 
r Parents 

C1 0.80 0.25 0.25 0.70 C2 

C2 0.80 0.25 0.50 0.20 C1 

C3 0.80 0.25 0.75 0.80 C3 

C4 0.80 0.25 1.0 0.15 C1 

4) Crossover: 

Suppose that the probability of crossover PX =0.80. 

Therefore, the expected number of chromosomes is 4, where 

PXPS=0.8 5 = 4. 

TABLE V.  THE SELECTED PARENTS FOR CROSSOVER. 

Parents R The selected parents New individual pos=3 

Pa1=C2 0.65 e0, e1, e3, e4, e9 e0, e1, e3, e4, e9 

Pa2=C1 0.82 --- --- 

Pa3=C3 0.87 --- --- 

Pa4=C1 0.40 e0, e2, e3, e4, e9 e0, e2, e3, e4, e9 

5) Mutation: 

Suppose that the probability of mutation PM =0.15. 

Therefore, the expected number of mutated cells is 3, where 

PMLPS=0.15 54 = 3. 

TABLE VI.  THE MUTATION OPERATION. 

Current population r New population 

e0, e1, e3, e4, e9 0.5, 0.1, 0.1, 0.2, 0.1 e0, e2, e3, e4, e9 

e0, e1, e3, e4, e9 0.1, 0.6, 0.2, 0.1, 0.1 e0, e1, e3, e5, e9 

e0, e2, e3, e4, e9 0.1, 0.1, 0.4, 0.4, 0.1 e0, e1, e3, e4, e9 

e0, e2, e3, e4, e9 0.1, 0.2, 0.1, 0.1, 0.1 e0, e2, e3, e5, e9 

6) Breeding: 

Suppose that the random number pos = number of adjacent 

edges in the chromosome = 4. Then, insert the successor edge 

at position 5. Table 7 shows the results of applying the 

breeding operator. After computing the fitness of the new 

population, we get two independent paths p1=e0, e1, e3, e5, e9 

and p2=e0, e2, e3, e5, e9. The algorithm will repeat the steps 

from 3 into 6 to get other two independent paths p3=e0, e1, e3, 

e4, e6, e8, e5, e9 and p4=e0, e1, e3, e4, e7, e8, e5, e9. We can see 

that p1 is a sub-path from p3 and p4 as well. Where the 

cyclomatic complexity of the ddgraph in Figure 1 C(DDG) = 

10 – 8 + 1 = 3. Therefore, the set of basis test paths consists of 

the three paths p2, p3, and p4. 

TABLE VII.  THE BREEDING OPERATION. 

Current population Successors New population Fitness value 

e0, e2, e3, e4, e9 e6, e7 e0, e2, e3, e4, e7, e9 0.83 

e0, e1, e3, e5, e9 e9 e0, e1, e3, e5, e9, e9 1.0 

e0, e1, e3, e4, e9 e6, e7 e0, e1, e3, e4, e6, e9 0.83 

e0, e2, e3, e5, e9 e9 e0, e2, e3, e5, e9, e9 1.0 

VI. CONCLUSION 

We introduced a new genetic algorithm based strategy for 

generating set of basis test path which can be used as testing 

paths in any basis path testing technique instead of selecting 

these paths manually. We defined all key elements of genetic 

algorithm such as chromosome representation, crossover, 

mutation, and fitness function. In addition, we present a case 

study to show the efficiency of our new strategy. Our future 

work concerns on doing more experiments to measure the 

efficiency of our strategy and compare it with other work. We 

will study how the proposed strategy can handle the loop. 
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