
Basis Test Paths Generation Using Genetic Algorithm

Ahmed S. Ghiduk

Dept. of Computer Science

College of Computers and Information Technology

Taif University, Taif, Saudi Arabia

asaghiduk@tu.edu.sa

O. Said

Dept. of Computer Science

College of Computers and Information Technology

Taif University, Taif, Saudi Arabia

o.saeed@tu.edu.sa

Sultan Aljahdali

Dept. of Computer Science

College of Computers and Information Technology

Taif University, Taif, Saudi Arabia

aljahdali@tu.edu.sa
Abstract—One of the key problems in path testing is building

a path through specified set of stalemates particularly which

contain loops. Traditional genetic algorithm has been successfully

used in software testing activities such as finding test data,

selecting test cases and test cases prioritization. In this paper, we

introduce a new variable length genetic algorithm. Based on the

new algorithm, we present a new strategy for automatically

generating a set of basis test paths which can be used as testing

paths in any basis path testing technique. We define all elements

of genetic algorithm such as chromosome representation,

crossover, mutation, and fitness function to be compatible with

path generation. In addition, we present a case study to show the

efficiency of our strategy.

Keywords-Genetic Algorithm; Basis Path Testing; Path

Generation.

I. INTRODUCTION

Structural testing requires the execution of a set of test

paths in the program under testing. Generating this set of paths

is a critical task, and its automation is strongly desirable for

easing the testing process. This task can influence the efficacy

and cost of testing activity.

Basis path testing is one of the very powerful structural

testing criteria. Basis path testing requires number of test paths

(basis set) equals to the cyclomatic complexity of program [1]

such that every path is an independent path and all edges in the

control-flow graph (CFG) are covered by all paths in the basis

set. In addition, a path that is not contained in the basis set can

be constructed by a linear combination of paths in this set.

Some path generation methods have been introduced so far.

Bertolino and Marre [2] provided a path generation method by

using a reduced CFG. Although all the statements and branches

can be covered by the set of paths, it cannot be assured that the

set of paths generated by this method is a basis set of paths.

Pool [3] discussed a basis set of paths generation method on

the depth first search in CFG. It uses a recursive search in the

CFG. As Pool’s method, the loop is not taken into account. In

addition, this method did not consider how to choose the

successor of multiple-successors node in a CFG to build a basis

path during the construction of the basis set of paths.

Guangmei et al. [4] presented an automatic generation method

of basis set of paths which is built by searching the CFG by

depth-first searching method. In order to avoid that the

algorithm will never stop, and for reducing the searching

procedure, the sub-path from the multi-indegree nodes to the

end node of a program and the sub-path that contains a loop are

recorded during the construction of a basis path. This method

did not handle infeasible paths. Yan and Zhang [5] presented a

method for generating a finite set F of feasible paths which

satisfies the basis path coverage criterion. Then, they found a

minimal subset S of set F such that S satisfies the test coverage

criterion. The first step should check the feasibility of all paths

and feasibility checking is quite time-consuming. Zhonglin and

Lingxia [6] and Qingfeng and Xiao [7] use cyclomatic

complexity in generating a set of linearly independent paths.

Many basis paths are infeasible because of data dependences

exist in variables involved in decision node. They combine the

baseline method with the dependence relationship to avoid

selecting infeasible paths. These methods didn’t handle loops.

Search-based testing techniques especially traditional

genetic algorithms have been successfully used in software

testing activities such as finding test data [8, 9]. Bint and Site

discussed a path generation method based on genetic algorithm

[10]. The defect of this method is that the generated set of paths

cannot cover all edges of the CFG because the loop operation

is removed. In addition, this method cannot generate a basis set

of test paths.

In this paper, we introduce a new variable length genetic

algorithm. Based on the proposed algorithm, we introduce a

new technique for automatically generating a set of basis test

paths. We define all elements of the new genetic algorithm

such as representation, crossover, mutation, and fitness

function to be compatible with path generation process. We

will introduce how the proposed technique can handle the loop

and infeasible paths. In addition, we will present a case study to

show the efficiency of our new strategy.

The rest of the paper is organized as follows. Section 2

introduces the problem formulation. Section 3 gives some

definitions. Section 4 presents our proposed strategy. Section 5

introduces a case study of the proposed method. Section 6

concludes the paper.

II. BASIS PATH TESTING

Structural testing generally requires the execution of a set Q

of paths in the program under testing. Determining Q is a very

important and critical task, and its automation is strongly

© ICCIT 2012 303

desirable for easing the testing strategy. This task can influence

on the efficacy and on the testing effort and costs.

Thomas McCabe came up with the idea of using a vector

space to carry out path testing [1]. A vector space is a set of

elements along with certain operations that can be performed

upon these elements. What makes vector spaces an attractive

proposition to testers is that they contain a basis. The basis of a

vector space contains a set of vectors that are independent of

one another, and have a spanning property; this means that

everything within the vector space can be expressed in terms of

the elements within the basis. What McCabe noticed was that if

a basis could be provided for a program graph, this basis could

be subjected to rigorous testing; if proven to be without fault, it

could be assumed that those paths expressed in terms of that

basis are also correct. The method devised by McCabe [1] to

carry out basis path testing has the following four steps:

 Compute the program graph.

 Calculate the cyclomatic complexity. In graph theory,

the cyclomatic number is defined as C(G) = m – n + q,

where m is number of edges in the graph G, n is

number of nodes, and q is number of strongly

connected components. For a program that has a single

entry and exit point, q = 1 [6]. In basis path testing, the

cyclomatic complexity should be the upper limit for the

number of basis paths [11].

 Select a basis set of paths.

 Generate test cases for each of these paths.

Independent path: An independent path is a path of a

program, and there is at least one edge in the control-flow

graph (CFG) appeared in this path that has never appeared in

other paths.

Basis set of path and basis path: A basis set of path is a

set of paths, and every path in this set should satisfy the next

three conditions:

 Every path should be an independent path.

 All edges in a CFG should be covered by all paths in

the basis set.

 Every path that does not contain in a basis set of path

can be constructed by the linear operation among paths

in this set.

The path contained in a basis set is called a basis path. The

problem of this work is defining a new genetic algorithm and

using it for generating a set Q of basis paths.

III. BASIC CONCEPTS

We introduce here some basic concepts that will be used

through this work.

A. Genetic Algorithms Principles

The basic concepts of genetic algorithms (GAs) were

developed by Holland [12]. The GAs start by creating an initial

population of individuals, each represented by randomly

generated binary string called chromosome. The basic

algorithm of GAs, where P(t) is the population strings at

generation number t, is as follows:

1. initialize P(t);

2. evaluate P(t);

3. while termination condition not satisfied do

4. select P(t+1) from P(t);

5. recombine P(t+1);

6. evaluate P(t+1);

7. t = t + 1;

8. end while

In the evaluation step, the fitness of each individual is

determined. The selection step is used to find pairs of

individuals that will be combined in some way to contribute to

the next generation. The process of crossover involves two

chromosomes swapping chunks of data. Mutation introduces

slight changes into a small proportion of population and is

representative of an evolutionary step. The above algorithm

will iterate until the population has evolved to form a solution

to the problem, or until a termination condition is satisfied.

B. Program representation

A program’s structure is analyzed on the program flow-

graph, i.e., an annotated directed graph which represents

graphically the information needed to select the test cases.

A control-flow graph (CFG) is a directed graph G=(N,E),

with two distinguished nodes —a unique entry (n0) and a

unique exit (nk). N is a set of nodes, where each node represents

a statement, and E is a set of directed edges, where a directed

edge e = (n, m) is an ordered pair of adjacent nodes, called tail

and head of e, respectively.

A dd-graph (DDG) is a digraph G =(N, E), where N is a

set of nodes and E is a set of edges, with two distinguished

edges e0, ek (the unique entry edge and the unique exit edge,

respectively), such that any other edge in E is reached by e0 and

reaches ek, and such that for each node n N, n≠tail(e0),

n≠head(ek), (indegree(n) + outdegree(n)) > 2, while

indegree(tail(e0)) = 0 and outdegree(tail(e0)) = 1,

indegree(head(ek)) = 1 and outdegree(head(ek)) = 0. An edge e

in a dd-graph DDG is an ordered pair of adjacent nodes, called

tail and head of e, respectively (i.e., e = (tail(e), head(e)). A

path p of length l in a dd-graph DDG is a sequence p= e0, e1,

e2, . . . , el, where tail(ei+1) = head(ei) for i = 1, 2,. . . , l-1. A

path p is simple if all its nodes, except possibly the first and

last, are distinct. A complete path in a dd-graph DDG is a path

from the entry node to the exit node of DDG. Given a path p=

e0, e1, e2, . . . , el, then a path p′= ei, . . . , ej from ei to ej, with 1

≤ i ≤ j ≤ l, is called a subpath of p. Antonia Bertolino and

Martina Marre provided a procedure to construct the dd-graph

by reducing the control flow graph of the program [2]. Figure

1(a) gives an example program, Figure 1(b) shows its control-

flow graph, and Figure 1(c) provides its ddgraph.

In our proposed system, we will represent the program

under test as a dd-graph according to the above definitions.

IV. OUR PROPOSED STRATEGY

A. Our new genetic algorithm

In this section, we present our proposed GA for automatic

generation of basis test paths for the tested software, which

uses a new fitness function to evaluate the generated test path.

This fitness function depends on the concepts of the number of

the adjacent edges in the ddgraph of the software under test.

The algorithm searches for test paths that satisfy the three

conditions of the basis set of path (see section II). The major

components of this GA are discussed below.

304

1) The search space of our algorithm:

The search space is the set of all solutions among which the

desired solution resides. Each point in the search space

represents one possible solution. Suppose that DDG is a

ddgraph of tested program. The search space of our new

genetic algorithm is D, where

s exit}and reache by entry is reachedDDG and e e|e{D .

In other word, the input domain of our algorithm is the set

of all edges of the ddgraph of the program under test. For

example the search space of the example program in Figure 1

is the set of edges D = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9}.

2) Encoding

Encoding is a process of representing individual genes. The

process can be performed using bits, numbers, trees, arrays,

lists or any other objects. The encoding depends mainly on

solving the problem. For example, one can encode directly real

or integer numbers. On the other hand, it is necessary to

develop new genetic operator’s specific to the problem.

The proposed GA uses a vector of integer (decimal)

numbers as a chromosome to represent the edges in the

ddgraph of the program under test. The length of the vector

depends on the length of the required basis path. Each edge in

the ddagrph is represented by its index in the chromosome. In

addition, each cell (value) in the vector (chromosome) is

mapped into its corresponding edge using the map:

M: i chromosome ei ddgraph.

For example, suppose the program in Figure 1. Let us

consider an example chromosome: 0, 1, 3, 5, 9. So, the given

chromosome corresponds to the path p= {e0, e1, e3, e5, e9}.

3) Initial population

As mentioned above, each chromosome is represented by a

vector of decimal numbers. We randomly generate PS integer

vectors of length 2 to represent the initial population, where PS

is the population size. The appropriate value of PS is

experimentally determined. Each individual in the initial

population contains two edges the entry and the exit. For the

example in Figure 1, all individuals have the form 0, 9 (e0, e9).

The minimum length of the chromosome is two and the

maximum length equals the number of ddgraph’ edges.

4) Evaluation function

The algorithm can use any fitness function to evaluate the

generated test path. The fitness function which depends on the

concepts of the probability of the adjacent edges in the path is

suitable for path generation. The algorithm uses this fitness

function to evaluate each test path.

The fitness value ft(vi) for each chromosome ci (i =1,…,

PS) is calculated as follows:

(1) w)c(ft

d

1j

ji

where, d is the number of adjacent edges in the

chromosome i, wj is the weight (probability) of the edge j in the

chromosome i,
L

1
w j , where L the length of the chromosome

(the number of edges in the chromosome).

The fitness value is the only feedback from the problem for

the GA. A test case that is represented by the chromosome vi is

optimal if its fitness value ft(vi) = 1.

Consider Figure 1(c), suppose 0, 1, 9 and 0, 2, 3, 9 are two

chromosomes. The first chromosome contains three genes or

edges (L=3) while the second contains four genes (L=4). The

probability of each gene in the first chromosome is
3

1
and d=2

while the probability of each gene in the second chromosome

is
4

1
and d=3. According to ―(1)‖, the fitness values of the first

and second chromosomes are
3

2
 and

4

3
, respectively.

5) Selection

After computing the fitness of each test path in the current

population, the algorithm selects test paths from all the

members of the current population that will be parents of the

new population. In the selection process, the GA uses the

roulette wheel method [13]. This method is described below.

For the selection of a new population with respect to the

probability distribution based on fitness values, a roulette

wheel with slots sized according to fitness is used. Such

roulette wheel is constructed as follows:

 Calculate the fitness value ft(vi) for each chromosome

vi (i = 1,…,PS).

 Find the total fitness of the population

PS

1i
i)v(ftF .

 Calculate the relative fitness value rft for each

chromosome
F

)v(ft
)v(rft i

i .

 (a) (b) (c)

Figure 1. An example program (a), its control-flow graph (b) and its dd-graph (c)

T

T

4

5

6

exit

entry

1

2

3

T F

9

10

8

F 7
11

F

#include <iostream.h>

void main()

{

 int a, b, c, n;

1 cin >> a >> b;

2 if(a < 6)

 {

3 c = a;

 }

 else

 {

4 c = b;

 }

5 n = c;

6 while(n < 8)

 {

7 if(b > c)

 {

8 c = 2;

 }

 else

 {

9 n = n + c + 7;

 }

10 n = n + 1;

 }

11 cout << a << b << n;

 }

e
8

e
0

entr

y

e
1
 e

2

2

e
3

6

5

e
4

11

e
5

exit

e
6
 e

7

10

7

e
9

305

 Calculate the cumulative fitness value cft for each

chromosome 1 i) rft(v

,..., ps2) irft(v)cft(vi
i

i1i
)cft(v

 .

The selection process is based on spinning the roulette

wheel PS times; each time we select a single chromosome for a

new population in the following way:

 Generate a random number r from the range [0..1].

 If r < cft(v1) then select the first chromosome v1;

otherwise select the i-th chromosome vi (2 i PS)

such that)v(cftr)v(cft 1ii .

Some chromosomes would be selected more than once.

6) Reproduction

In the Reproduction phase, we use three operators,

crossover, mutation and breeding (a new operator we have

proposed it), which are the key to the power of GAs. These

operators create new individuals from the selected parents to

form a new population.

Crossover: It operates at the individual level. During

crossover, two parents (chromosomes) exchange sub-vector

information (genetic material) at a random position in the

chromosome to produce two new vectors (offspring). The

objective here is to create better population over time by

combining material from pairs of (fitter) members from the

parent population. Crossover occurs according to a crossover

probability. The probability of crossover PX gives us the

expected number PX PS of chromosomes, which undergo the

crossover operation. We proceed in the following way:

For each chromosome in the parent population:

 Generate a random number r from the range [0..1];

 If r < PX then select given chromosome for crossover.

Now, we mate selected chromosomes randomly: For each

pair of coupled chromosomes we generate a random integer

number pos from the range [2..L-1] (L is the number of edges

in a chromosome). The number pos indicates the position of

the crossing point. Two chromosomes (b1…bposbpos+1…bn) and

(c1…cposcpos+1…cn) are replaced by a pair of their offspring

(b1…bposcpos+1…cn) and (c1…cposbpos+1…bn).

Suppose that C1=(0, 1, 3, 5, 9) and C2=(0, 2, 3, 4, 9) are

two chromosomes and 4..23pos , where L = 5. After

applying the crossover operator the new chromosomes are

B1=(0, 1, 3, 4, 9) and B2=(0, 2, 3, 5, 9).

Mutation: It is performed on a cell-by-cell basis. Mutation

always operates after the crossover operator, and changes each

cell with the pre-determined probability. The probability of

mutation PM, gives us the expected number of mutated cells

PM L PS. Every cell (in all chromosomes in the whole

population) has an equal chance to undergo mutation. So we

proceed in the following way:

For each chromosome in the current population and for

each cell within the chromosome:

 Generate a random number r from the range [0..1];

 If r < PM then mutate the cell by replacing the edge

with another edge of its siblings (edges with the same

parent are called siblings such as e1 and e2).

Suppose that C1 = (0, 1, 3, 5, 9) is a chromosomes. The

second cell which has the value 1 will mutate to the value 2.

Therefore the new chromosome will be B1 = (0, 2, 3, 5, 9).

Breeding: It is a new operator. We have developed this

operator to enhance the chromosomes to get a complete path. It

performed on a cell level. Breeding always operates after the

mutation operator. We generate a random integer number pos

from the range [2..L-1]. The number pos indicates the position

of the breeding point. So, we proceed in the following way:

For each chromosome in the current population:

 Generate a random integer number pos from the range

[2..L-1], L is the length of the chromosome. We can

put pos = d (number of adjacent edges in the

chromosome).

 Identify the edge at the position pos and randomly

select one edge of its successors.

 Then, insert the successor edge at the position pos+1

and increase the length of the chromosome by one.

Suppose that C1 = (0, 1, 3, 4, 9) is a chromosomes and pos

= 4. The edge at position 4 is e4. The successors of e4 are e6

and e7. We randomly select one of the successors and insert it

at position 5. The new chromosome is B1 = (0, 1, 3, 4, 6, 9).

7) Elitist

The elitist function enhances the current population by

storing one copy of the best member of the previous

population. If the best member of the current population is

worse than the best member of the previous population it

exchanges them, and the best member of the current population

would replace the worst member of the current population.

After that, it stores the best member of the current population.

8) The Stop Conditions

In the traditional GA approach the population would evolve

until one individual from the whole set which represents the

solution is found. In our case, this condition would correspond

to finding groups of path achieving the basis test paths

conditions. The evolution stops when a set of individuals has

satisfied the required conditions and its fitness value ft(vi) = 1.

The solution is this set.

The algorithm will stop and the search will end in two

cases. The first case when the generated test paths satisfy the

conditions of the basis set of path. The second case when the

number of generation reaches the maximum number of

generation.

B. The Overall Algorithm of the Strategy

Our proposed GA-based strategy accepts as input the

program to be tested, the control-flow graph (CFG) and the

ddgraph (DDG) of the program, the entry (e0) and the exit (ek)

edges of the ddgraph (DDG) and the set Si of successors of

each edge ei. Also, it accepts the GA parameters: population

size, maximum number of generations, and probabilities of the

crossover and mutation operators. The algorithm produces a

set of basis test paths.

The algorithm generates one basis test path at a time and

repeats until the required paths are obtained or the maximum

number of generations is exceeded. The overall algorithm is

presented in Figure 2.

306

C. A Basis Test Paths Generation Tool

We are implementing a basis test paths generation tool

based on our proposed strategy. This tool consists of two main

modules:

1) The Analysis Module.

2) Path Generation Module.

Figure 3 shows the overall diagram of our proposed tool. We

give a more details of these two modules of our tool in the

following subsections.
1) Analysis Module

The analysis module has been built to perform the

following tasks:

 Read the program under test.

 Classify program statements and reformats them to

facilitate the construction of the program CFG.

 Construct the control-flow graph of the reformatted

version of the program (see Figure 1(b)).

 Construct the ddgraph by reducing the control flow

graph using the REDUCE algorithm [2]. Figure 1(c)

gives an example ddgraph after applying the REDUCE

algorithm on the control flow graph.

 Find the set of successors for each edge in the ddgraph.

Pass the control-flow graph, ddgraph, and table of

successors to the test path generation module.

TABLE I. THE SET OF SUCCESSORS OF EACH EDGE IN THE DDGRAPH.

edge e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

Successors
e1,

e2
e3 e3

e4,

e5

e6,

e7
e9 e8 e8

e4,

e5
NA

In the following paragraphs, we give a brief description for

our proposed module for path generation of C++ programs.

This module uses the new genetic algorithm to solve the

problem of deriving a set of basis test paths.

2) Path Generation Module

The path generation module uses the suggested genetic

algorithm to generate set of basis test paths. This module will

start by initializing all paths by the entry and exit edges. Then

it will increment each path by adding new edges until get a

complete path. For example {e0 , e9} is the initialization of any

path then the algorithm will add new edges according to the

operators of the genetic algorithm until get a complete path

such as {e0, e2, e4, e6, e9}. The algorithm will repeat this

process until generating the set of basis test paths or

satisfying a stop condition.
V. A CASE STUDY

In this section, we introduce a case study to show how the

proposed strategy can find a basis set of test paths for the

example program in Figure 1. In the following, we will show

all the steps of our proposed genetic algorithm. Suppose that

the population size (PS) is 4.

1) Initial Population:

The initial population is four individuals each one contains

the entry and the exit edges only. Table 2 shows the four

chromosomes of the initial populations.

2) Evaluation of the Current Population

Suppose that the current population has the following four

chromosomes: C1=(0, 1, 3, 5, 9), C2=(0, 2, 3, 4, 9), C3=(0, 2, 3,

5, 9) and C4=(0, 1, 3, 4, 9). To find the fitness value of each

chromosome, we convert each chromosome into the

corresponding path. Then, we use equation (1) to find the

fitness value for the chromosome. In each chromosome there

are five edges in its corresponding path (L=5), and four

adjacent edges (d=4). Then, 5,...,1,
5

1
 iwi . Therefore, the

/* A GA algorithm to automatically generate set of basis test paths for a given program */
Input:

The program to be tested P;

The control-flow graph (CFG) and the ddgraph (DDG) of P.

The entry e0 and the exit ek edges of the ddgraph (DDG).

The set Si of successors of each edge ei.

Population size (PS);

Maximum no. of generations (MG);

Probability of crossover (PX);

Probability of mutation (PM);

Output:

Set of basis test paths (BTP) for P.

Begin

Step 1: Initialization

for i = 1 to PS

Initialize each path pi ← φ;

Initialize the set of basis test paths BTP ← φ;

nRun ←0;

Step 2: Generate basis test paths

While (the set BTP is not a basis set)

Begin

nRun ← nRun + 1;

for i = 1 to PS // Create Initial_Population;

Put each path pi ← {e0, ek};

Current_population ← Initial_Population;

No_Of_Generations ← 0;

For each individual of the current population do

Begin

Convert the current chromosome to the corresponding path;

Evaluate the current path using equation (1);

If (the current path is independent path) then

Add the current path to the set BTP;

nPaths ← nPaths + 1;

End If

End For;

Keep the best individual of the current population;

While (the best individual is not independent path and No_Of_Generations ≤ MG) do

Begin

Select set of parents of new population from members of current population using

roulette wheel method;

Create New_Population using crossover and mutation operators;

Current_Population ← New_Population;

For each individual of Current_Population do

Begin

Convert current chromosome to the corresponding path;

Evaluate the current path using equation (1);

If (the current path is independent path) then

Add the current path to the set BTP;

nPaths ← nPaths + 1;

End If

End For;

Apply Elitist function;

Enhance the Current_Population by applying the breeding operator;

For each individual of Current_Population do

Begin

Convert current chromosome to the corresponding path;

Evaluate the current path using equation (1);

If (the current path is independent path) then

Add the current path to the set BTP;

nPaths ← nPaths + 1;

End If

End For;

No_Of_Generations ← No_Of_Generations + 1;

End While;

End While;

Step 3: Produce output

Return set of basis test paths for P, and set of edges covered by each test path;

Report on uncovered edges, if any;

End.

Figure 2: The Overall Algorithm.

User

Inputs

Figure 3: The block diagram of the proposed tool

Inputs

Outputs

Outputs

Inputs

Software under test (SUT)

Analysis Module

Path Generation

Module

Set of Paths (P)

Outputs

Control Flow Graph

(CFG)

DDgraph (DDG)

Si successors of each

 edge ei

307

fitness value of C1 = ft(C1)=w1+ w2+ w3+ w4 =
5

4
= 0.8. Table

3 shows the fitness values of the current population.

TABLE II. THE CHROMOSOMES OF THE INITIAL POPULATION.

Chromosome # Chromosome Corresponding Path

C1 0, 9 e0, e9

C2 0, 9 e0, e9

C3 0, 9 e0, e9

C4 0, 9 e0, e9

TABLE III. THE FITNESS VALUES OF THE CURRENT POPULATION.

Chromosome # Corresponding Path Fitness value

C1 e0, e1, e3, e4, e9 0.80

C2 e0, e2, e3, e4, e9 0.80

C3 e0, e2, e3, e4, e9 0.80

C4 e0, e1, e3, e4, e9 0.80

3) Selection:

We use the roulette wheel method to select the parents of

the next population. The total fitness F=ft(C1)+ft(C2)+ ft(C3)+

ft(C4)= 3.2. Table 4 shows the computations of roulette wheel.

TABLE IV. THE ROULETTE WHEEL.

C #
Fitness

value

Relative

Fitness

Cumulative

Fitness
r Parents

C1 0.80 0.25 0.25 0.70 C2

C2 0.80 0.25 0.50 0.20 C1

C3 0.80 0.25 0.75 0.80 C3

C4 0.80 0.25 1.0 0.15 C1

4) Crossover:

Suppose that the probability of crossover PX =0.80.

Therefore, the expected number of chromosomes is 4, where

PXPS=0.8 5 = 4.

TABLE V. THE SELECTED PARENTS FOR CROSSOVER.

Parents R The selected parents New individual pos=3

Pa1=C2 0.65 e0, e1, e3, e4, e9 e0, e1, e3, e4, e9

Pa2=C1 0.82 --- ---

Pa3=C3 0.87 --- ---

Pa4=C1 0.40 e0, e2, e3, e4, e9 e0, e2, e3, e4, e9

5) Mutation:

Suppose that the probability of mutation PM =0.15.

Therefore, the expected number of mutated cells is 3, where

PMLPS=0.15 54 = 3.

TABLE VI. THE MUTATION OPERATION.

Current population r New population

e0, e1, e3, e4, e9 0.5, 0.1, 0.1, 0.2, 0.1 e0, e2, e3, e4, e9

e0, e1, e3, e4, e9 0.1, 0.6, 0.2, 0.1, 0.1 e0, e1, e3, e5, e9

e0, e2, e3, e4, e9 0.1, 0.1, 0.4, 0.4, 0.1 e0, e1, e3, e4, e9

e0, e2, e3, e4, e9 0.1, 0.2, 0.1, 0.1, 0.1 e0, e2, e3, e5, e9

6) Breeding:

Suppose that the random number pos = number of adjacent

edges in the chromosome = 4. Then, insert the successor edge

at position 5. Table 7 shows the results of applying the

breeding operator. After computing the fitness of the new

population, we get two independent paths p1=e0, e1, e3, e5, e9

and p2=e0, e2, e3, e5, e9. The algorithm will repeat the steps

from 3 into 6 to get other two independent paths p3=e0, e1, e3,

e4, e6, e8, e5, e9 and p4=e0, e1, e3, e4, e7, e8, e5, e9. We can see

that p1 is a sub-path from p3 and p4 as well. Where the

cyclomatic complexity of the ddgraph in Figure 1 C(DDG) =

10 – 8 + 1 = 3. Therefore, the set of basis test paths consists of

the three paths p2, p3, and p4.

TABLE VII. THE BREEDING OPERATION.

Current population Successors New population Fitness value

e0, e2, e3, e4, e9 e6, e7 e0, e2, e3, e4, e7, e9 0.83

e0, e1, e3, e5, e9 e9 e0, e1, e3, e5, e9, e9 1.0

e0, e1, e3, e4, e9 e6, e7 e0, e1, e3, e4, e6, e9 0.83

e0, e2, e3, e5, e9 e9 e0, e2, e3, e5, e9, e9 1.0

VI. CONCLUSION

We introduced a new genetic algorithm based strategy for

generating set of basis test path which can be used as testing

paths in any basis path testing technique instead of selecting

these paths manually. We defined all key elements of genetic

algorithm such as chromosome representation, crossover,

mutation, and fitness function. In addition, we present a case

study to show the efficiency of our new strategy. Our future

work concerns on doing more experiments to measure the

efficiency of our strategy and compare it with other work. We

will study how the proposed strategy can handle the loop.

REFERENCES

[1] T. McCabe, J. Thomas, Structural Testing: A Software Testing

Methodology Using the Cyclomatic Complexity Metric, NIST Special

Publication 500-99, Washington D.C., 1982.

[2] A. Bertolino, M. Marre, ―Automatic Generation of Path Covers Based

on the Control flow analysis of computer Programs‖ IEEE Transaction

on Software on software Engineering, vol.20(12), pp. 885-899, 1994.

[3] J. Poole, ―A Method to Determine a Basis Set of Paths to Perform

Program Testing‖ http://hissa.nist.gov//publications/nistir5737, 2004

[4] Z. Guangmei, C. Rui, L. Xiaowei, H. Congying ―The Automatic

Generation of Basis Set of Path for Path Testing‖, Proceedings of the

14th Asian Test Symposium (ATS ’05), 2005.

[5] Jun Yan, Jian Zhang ―An efficient method to generate feasible paths for

basis path testing‖ Information Processing Letters, Vol. 107, Issues 3-4,

pp. 87-92, 31 July 2008.

[6] Z. Zhonglin, M. Lingxia, ―An Improved Method of Acquiring Basis

Path for Software Testing‖ Proceedings of 5th International Conference

on Computer Science & Education, pp.1891-1894, China, 2010.

[7] D. Qingfeng, D. Xiao ―An Improved Algorithm for Basis Path Testing‖

International Conference on Business Management and Electronic

Information (BMEI), pp. 175 – 178, 2011.

[8] D. Gonga, W. Zhanga, X. Yaob ―Evolutionary Generation of Test Data

for Many Paths Coverage Based on Grouping‖ Journal of Systems and

Software, In Press, Corrected Proof, Available online 25 June 2011.

[9] P. M. S. Bueno, M. Jino, W. E. Wong ―Diversity oriented test data

generation using metaheuristic search techniques‖ Journal of

Information Sciences, In Press, Corrected Proof, Available online 23

January 2011.

[10] J. R. Bint, Renate Site, ―Optimizing Testing Efficiency with Error Prone

Path Identification and Genetic Algorithms‖ 2004 Australian Software

Engineering Conference (ASWEC'04), Australia, pp.106-115, 2004.

[11] S. Haiying, Method and Practice of Software Testing, Beijing: China

Railway Publishing House, 2009.

[12] J. Holland, Adaptation in Natural and Artificial Systems, ISBN 0 472

08460 7. University of Michigan Press, Ann Arbor, MI, 1975.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, 3rd Edition, Springer, 1999.

308

http://www.sciencedirect.com.www.library.gatech.edu:2048/science/article/pii/S002001900800032X?_alid=1810599660&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=6029&_zone=rslt_list_item&md5=4797575da1f5b329a1a931bcb4cc2381
http://www.sciencedirect.com.www.library.gatech.edu:2048/science/article/pii/S002001900800032X?_alid=1810599660&_rdoc=1&_fmt=high&_origin=search&_docanchor=&_ct=6029&_zone=rslt_list_item&md5=4797575da1f5b329a1a931bcb4cc2381

